Course Objectives

The objectives of the course are to provide students with a working knowledge of the basic NMR techniques available to the modern chemist and to allow students to gain practical experience by applying these techniques to structural problems in organic chemistry.

Course Description

The course begins with a general introduction to the NMR phenomenon, including generation and acquisition of the NMR signal, data processing and lineshape. After introducing simple proton and carbon NMR spectra, the course turns to its main focus; describing the basic tools of NMR spectroscopy and their uses. These tools include chemical shift, J coupling, NOE and other relaxation phenomena. The use of one-dimensional techniques such as chemical shift additivity rules, spectral editing, decoupling and difference spectroscopy for solving problems in structure analysis and dynamic chemical systems will be emphasized. Two-dimensional techniques for resolving couplings, and chemical shift correlation experiments will also be illustrated by application to a wide variety of organic structural problems.

CHEMISTRY 520

Interpretation of 1D and 2D NMR Spectra

Fall 2006 Course Syllabus

Instructor: Dr. Mike McGregor Email: <u>mmcgregor@chm.uri.edu</u>

Course Grading:		Problem Sets Exams Final Exam	30% 40% 30%
<u>Date</u>		<u>Topic</u>	
09/11		Basic NMR The	eory, Chemical Shift, Shielding
09/18		¹³ C Chemical S	hift
09/25		Spin-Spin Coup	bling
10/02		Analysis of NM	IR Spectra
10/16	First Exam	Chemical and N	Aagnetic Equivalence
10/23		Homonuclear D	Decoupling, NOE, Dynamic Systems
10/30		Heteronuclear M	NOE, Spectral Editing
10/24		Relaxation, Inte	erpretive Uses of T ₁
11/6		Principles of Ty	vo-Dimensional Experiments
11/13	Second Exam	J-Resolved Spe	ctra
11/20		Homonuclear C	Correlation Spectra
11/27		Heteronuclear (Correlation Spectra
12/04		Long-Range Co	prrelation Spectra
12/11		Computer Assis	ted Identification
12/18	Final Exam		